Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chembiochem ; 24(10): e202300034, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2308421

RESUMEN

CRISPR-LbuCas13a has emerged as a revolutionary tool for in vitro diagnosis. Similar to other Cas effectors, LbuCas13a requires Mg2+ to maintain its nuclease activity. However, the effect of other divalent metal ions on its trans-cleavage activity remains less explored. Herein, we addressed this issue by combining experimental and molecular dynamics simulation analysis. In vitro studies showed that both Mn2+ and Ca2+ could replace Mg2+ as cofactors of LbuCas13a. In contrast, Ni2+ , Zn2+ , Cu2+ , or Fe2+ inhibits the cis- and trans-cleavage activity, while Pb2+ does not affect it. Importantly, molecular dynamics simulations confirmed that calcium, magnesium, and manganese hydrated ions have a strong affinity to nucleotide bases, thus stabilizing the conformation of crRNA repeat region and enhancing the trans-cleavage activity. Finally, we showed that combination of Mg2+ and Mn2+ can further enhance the trans-cleavage activity to allow amplified RNA detection, revealing its potential advantage for in vitro diagnosis.


Asunto(s)
Manganeso , ARN , Calcio/metabolismo , Conformación Molecular , Magnesio , Sistemas CRISPR-Cas
2.
PLoS Comput Biol ; 19(2): e1010922, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2284508

RESUMEN

Multiple coronaviruses including MERS-CoV causing Middle East Respiratory Syndrome, SARS-CoV causing SARS, and SARS-CoV-2 causing COVID-19, use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate. SARS-CoV-2 possesses a unique RNA pseudoknotted structure that stimulates -1 PRF. Targeting -1 PRF in SARS-CoV-2 to impair viral replication can improve patients' prognoses. Crucial to developing these therapies is understanding the structure of the SARS-CoV-2 -1 PRF pseudoknot. Our goal is to expand knowledge of -1 PRF structural conformations. Following a structural alignment approach, we identify similarities in -1 PRF pseudoknots of SARS-CoV-2, SARS-CoV, and MERS-CoV. We provide in-depth analysis of the SARS-CoV-2 and MERS-CoV -1 PRF pseudoknots, including reference and noteworthy mutated sequences. To better understand the impact of mutations, we provide insight on -1 PRF pseudoknot sequence mutations and their effect on resulting structures. We introduce Shapify, a novel algorithm that given an RNA sequence incorporates structural reactivity (SHAPE) data and partial structure information to output an RNA secondary structure prediction within a biologically sound hierarchical folding approach. Shapify enhances our understanding of SARS-CoV-2 -1 PRF pseudoknot conformations by providing energetically favourable predictions that are relevant to structure-function and may correlate with -1 PRF efficiency. Applied to the SARS-CoV-2 -1 PRF pseudoknot, Shapify unveils previously unknown paths from initial stems to pseudoknotted structures. By contextualizing our work with available experimental data, our structure predictions motivate future RNA structure-function research and can aid 3-D modeling of pseudoknots.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Conformación Molecular , Conformación de Ácido Nucleico
3.
Anal Chem ; 94(31): 10949-10958, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1960210

RESUMEN

PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a µs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.


Asunto(s)
COVID-19 , Agregado de Proteínas , Humanos , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , SARS-CoV-2
4.
Biomolecules ; 12(7)2022 07 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1928473

RESUMEN

In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/genética , Humanos , Conformación Molecular , Mutación , Unión Proteica , Estabilidad Proteica , SARS-CoV-2/genética
5.
Sci Rep ; 12(1): 2505, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1747189

RESUMEN

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Nitrilos/química , Nitrilos/metabolismo , Nitrilos/farmacología , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
6.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1745034

RESUMEN

A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.


Asunto(s)
ADN/química , ADN/metabolismo , Dendrímeros/química , Fenoles/química , Sulfuros/química , Animales , Masculino , Conformación Molecular , Salmón , Espermatozoides/metabolismo
7.
Molecules ; 27(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1715570

RESUMEN

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Asunto(s)
Artemisia/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavonoides/química , SARS-CoV-2/enzimología , Animales , Artemisia/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Teoría Funcional de la Densidad , Flavonoides/aislamiento & purificación , Flavonoides/metabolismo , Flavonoides/farmacología , Humanos , Dosificación Letal Mediana , Masculino , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ratas , SARS-CoV-2/aislamiento & purificación , Piel/efectos de los fármacos , Piel/patología
8.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1700048

RESUMEN

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.


Asunto(s)
SARS-CoV-2/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Conformación Molecular , Simulación de Dinámica Molecular , Estabilidad Proteica , Glicoproteína de la Espiga del Coronavirus/genética
9.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1667196

RESUMEN

Structural and functional studies of the SARS-CoV-2 spike proteins have recently determined distinct functional states of the B.1.1.7 and B.1.351 spike variants, providing a molecular framework for understanding the mechanisms that link the effect of mutations with the enhanced virus infectivity and transmissibility. A detailed dynamic and energetic analysis of these variants was undertaken in the present work to quantify the effects of different mutations on functional conformational changes and stability of the SARS-CoV-2 spike protein. We employed the efficient and accurate coarse-grained (CG) simulations of multiple functional states of the D614G mutant, B.1.1.7 and B.1.351 spike variants to characterize conformational dynamics of the SARS-CoV-2 spike proteins and identify dynamic signatures of the functional regions that regulate transitions between the closed and open forms. By combining molecular simulations with full atomistic reconstruction of the trajectories and the ensemble-based mutational frustration analysis, we characterized how the intrinsic flexibility of specific spike regions can control functional conformational changes required for binding with the host-cell receptor. Using the residue-based mutational scanning of protein stability, we determined protein stability hotspots and identified potential energetic drivers favoring the receptor-accessible open spike states for the B.1.1.7 and B.1.351 spike variants. The results suggested that modulation of the energetic frustration at the inter-protomer interfaces can serve as a mechanism for allosteric couplings between mutational sites and the inter-protomer hinges of functional motions. The proposed mechanism of mutation-induced energetic frustration may result in greater adaptability and the emergence of multiple conformational states in the open form. This study suggested that SARS-CoV-2 B.1.1.7 and B.1.351 variants may leverage the intrinsic plasticity of functional regions in the spike protein for mutation-induced modulation of protein dynamics and allosteric regulation to control binding with the host cell receptor.


Asunto(s)
COVID-19/metabolismo , SARS-CoV-2/ultraestructura , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Regulación Alostérica , Sitios de Unión , COVID-19/patología , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Estabilidad Proteica , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
10.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1621653

RESUMEN

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Coronavirus/genética , Descubrimiento de Drogas , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Relación Estructura-Actividad
11.
Chem Biodivers ; 18(11): e2100674, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1615945

RESUMEN

Chemical investigation on a Streptomyces sp. strain MS180069 isolated from a sediment sample collected from the South China Sea, yielded the new benzo[f]isoindole-dione alkaloid, bhimamycin J (1). The structure was determined by extensive spectroscopic analysis, including HRMS, 1D, 2D NMR, and X-ray diffraction techniques. A molecular docking study revealed 1 as a new molecular motif that binds with human angiotensin converting enzyme2 (ACE2), recently described as the cell surface receptor responsible for uptake of 2019-CoV-2. Using enzyme assays we confirm that 1 inhibits human ACE2 79.7 % at 25 µg/mL.


Asunto(s)
Alcaloides/química , Sedimentos Geológicos/microbiología , Isoindoles/química , Streptomyces/química , Alcaloides/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Sitios de Unión , COVID-19/virología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Isoindoles/aislamiento & purificación , Isoindoles/metabolismo , Isoindoles/farmacología , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación del Acoplamiento Molecular , SARS-CoV-2/aislamiento & purificación , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo , Tratamiento Farmacológico de COVID-19
12.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1611203

RESUMEN

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Asunto(s)
Alcaloides/química , Antiinflamatorios/química , Antivirales/química , Forsythia/química , Monoterpenos/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antivirales/aislamiento & purificación , Antivirales/farmacología , Forsythia/metabolismo , Frutas/química , Frutas/metabolismo , Glucuronidasa/metabolismo , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Factor de Activación Plaquetaria/farmacología , Ratas , Virus Sincitiales Respiratorios/efectos de los fármacos
13.
Nat Commun ; 12(1): 7345, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1585860

RESUMEN

The emergence of SARS-CoV-2 Kappa and Beta variants with enhanced transmissibility and resistance to neutralizing antibodies has created new challenges for the control of the ongoing COVID-19 pandemic. Understanding the structural nature of Kappa and Beta spike (S) proteins and their association with ACE2 is of significant importance. Here we present two cryo-EM structures for each of the Kappa and Beta spikes in the open and open-prone transition states. Compared with wild-type (WT) or G614 spikes, the two variant spikes appear more untwisted/open especially for Beta, and display a considerable population shift towards the open state as well as more pronounced conformational dynamics. Moreover, we capture four conformational states of the S-trimer/ACE2 complex for each of the two variants, revealing an enlarged conformational landscape for the Kappa and Beta S-ACE2 complexes and pronounced population shift towards the three RBDs up conformation. These results implicate that the mutations in Kappa and Beta may modify the kinetics of receptor binding and viral fusion to improve virus fitness. Combined with biochemical analysis, our structural study shows that the two variants are enabled to efficiently interact with ACE2 receptor despite their sensitive ACE2 binding surface is modified to escape recognition by some potent neutralizing MAbs. Our findings shed new light on the pathogenicity and immune evasion mechanism of the Beta and Kappa variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Microscopía por Crioelectrón , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , COVID-19 , Humanos , Cinética , Conformación Molecular , Mutación , Unión Proteica
14.
J Am Chem Soc ; 143(46): 19306-19310, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1510556

RESUMEN

The 68-kDa homodimeric 3C-like protease of SARS-CoV-2, Mpro (3CLpro/Nsp5), is a promising antiviral drug target. We evaluate the concordance of models generated by the newly introduced AlphaFold2 structure prediction program with residual dipolar couplings (RDCs) measured in solution for 15N-1HN and 13C'-1HN atom pairs. The latter were measured using a new, highly precise TROSY-AntiTROSY Encoded RDC (TATER) experiment. Three sets of AlphaFold2 models were evaluated: (1) MproAF, generated using the standard AlphaFold2 input structural database; (2) MproAFD, where the AlphaFold2 implementation was modified to exclude all candidate template X-ray structures deposited after Jan 1, 2020; and (3) MproAFS, which excluded all structures homologous to coronaviral Mpro. Close agreement between all three sets of AlphaFold models and experimental RDC data is found for most of the protein. For residues in well-defined secondary structure, the agreement decreases somewhat upon Amber relaxation. For these regions, MproAF agreement exceeds that of most high-resolution X-ray structures. Residues from domain 2 that comprise elements of both the active site and the homo-dimerization interface fit less well across all structures. These results indicate novel opportunities for combining experimentation with molecular dynamics simulations, where solution RDCs provide highly precise input for QM/MM simulations of substrate binding/reaction trajectories.


Asunto(s)
Proteasas 3C de Coronavirus/química , Cristalografía por Rayos X/métodos , SARS-CoV-2 , COVID-19 , Dominio Catalítico , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Pliegue de Proteína , Programas Informáticos , Rayos X
15.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1512506

RESUMEN

Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 µM.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Dipéptidos/química , Plata/química , Antiinfecciosos/síntesis química , Antineoplásicos/síntesis química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Fenómenos Químicos , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Análisis Espectral , Relación Estructura-Actividad , Termogravimetría
16.
Sci Rep ; 11(1): 21735, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1504063

RESUMEN

The COVID19 pandemic, caused by SARS-CoV-2, has infected more than 200 million people worldwide. Due to the rapid spreading of SARS-CoV-2 and its impact, it is paramount to find effective treatments against it. Human neutralizing antibodies are an effective method to fight viral infection. However, the recent discovery of new strains that substantially change the S-protein sequence has raised concern about vaccines and antibodies' effectiveness. Here, using molecular simulations, we investigated the binding mechanisms between the S-protein and several antibodies. Multiple mutations were included to understand the strategies for antibody escape in new variants. We found that the combination of mutations K417N, E484K, L452R, and T478K produced higher binding energy to ACE2 than the wild type, suggesting higher efficiency to enter host cells. The mutations' effect depends on the antibody class. While Class I enhances the binding avidity in the presence of N501Y mutation, class II antibodies showed a sharp decline in the binding affinity. Our simulations suggest that Class I antibodies will remain effective against the new strains. In contrast, Class II antibodies will have less affinity to the S-protein, potentially affecting these antibodies' efficiency.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , COVID-19/inmunología , COVID-19/virología , Mutación , SARS-CoV-2/genética , Anticuerpos Antivirales/inmunología , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Humanos , Enlace de Hidrógeno , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo
17.
J Med Chem ; 65(4): 2956-2970, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1500413

RESUMEN

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Productos Biológicos/farmacología , Tratamiento Farmacológico de COVID-19 , Catepsina L/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Antivirales/síntesis química , Antivirales/química , Productos Biológicos/síntesis química , Productos Biológicos/química , COVID-19/metabolismo , Catepsina L/metabolismo , Chlorocebus aethiops , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Proteómica , Relación Estructura-Actividad , Células Vero
18.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1463709

RESUMEN

Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18-1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4',6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Triterpenos/farmacología , Inhibidores de la Angiogénesis , Antineoplásicos/química , Sitios de Unión , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Triterpenos/química
19.
J Phys Chem Lett ; 11(19): 8084-8093, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1387116

RESUMEN

SARS-CoV-2 is a health threat with dire socioeconomical consequences. As the crucial mediator of infection, the viral glycosylated spike protein (S) has attracted the most attention and is at the center of efforts to develop therapeutics and diagnostics. Herein, we use an original decomposition approach to identify energetically uncoupled substructures as antibody binding sites on the fully glycosylated S. Crucially, all that is required are unbiased MD simulations; no prior knowledge of binding properties or ad hoc parameter combinations is needed. Our results are validated by experimentally confirmed structures of S in complex with anti- or nanobodies. We identify poorly coupled subdomains that are poised to host (several) epitopes and potentially involved in large functional conformational transitions. Moreover, we detect two distinct behaviors for glycans: those with stronger energetic coupling are structurally relevant and protect underlying peptidic epitopes, and those with weaker coupling could themselves be prone to antibody recognition.


Asunto(s)
Epítopos/química , Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus/química , Algoritmos , Betacoronavirus/química , Sitios de Unión de Anticuerpos , Glicosilación , Humanos , Modelos Moleculares , Conformación Molecular , Péptidos/química , Polisacáridos/química , SARS-CoV-2
20.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1370748

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration-approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (Mpro) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block screening hit (molecular weight [MW] = 542.5 g/mol), was a potent inhibitor (inhibition constant [Ki] = 20 nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of Mpro (Ki = 45 nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (Ki = 37 nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , COVID-19/virología , Células Cultivadas , Proteasas 3C de Coronavirus/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Ingeniería Genética , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , SARS-CoV-2/metabolismo , Relación Estructura-Actividad , Replicación Viral , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA